随笔 - 63  文章 - 1 评论 - 14 trackbacks - 0

1. 应用优化

对于访问数据库来说,建立连接的代价是比较昂贵的,因为我们频繁的创建关闭连接,是比较耗费资源的,我们有必要建立数据库连接池,以提高访?#23454;男阅堋?/p>

1.2 减少对MySQL的访问

1.2.1 避免对数据进行重复检索

在编写应用代码时,需要能够理清对数据库的访问逻辑。能够一次连接就获取到结果的,就不用两次连接,这样可?#28304;?#22823;减少对数据无用的重复请求。
比如,需要获取书籍的id和name字?#21361;?#21017;查询如下 :
select id,name from tb_book;
之后,在业务逻辑中?#34892;?#35201;获取到书籍状态信息,则查询如下 :
select id,status from tb_book;

1.2.2 增加cache层

在应用中,我?#24378;?#20197;在应用中增加缓存层来达到减轻数据库负担的目的。缓存层有很多种,也很有很多实现方式,只要能达到数据库的负担又能满足应用需求就可以。
因此可以部分数据从数据库中抽取出来放到应用端以文本方式存储,或者使用框架(Mybatis,Hibernate)提供的一级缓存/二级缓存,或者使用redis数据库来缓存数据。

1.3 负载均衡

负载均衡是应用中使用非常普遍的一种优化方法,它的机制就是利用某种均衡算法,将固定的负载量分布到不同的服务器上,?#28304;?#26469;降低单台服务器的负载,达到优化的效果。

1.3.1 利用MySQL复制分流查询

通过MySQL的主从复制,实现读写分离,使增删改操作走主节点,查询操作走从节点,从而可以降低单台服务器的读写压力。
在这里插入图片描述

1.3.2 采用分布式数据架构

分布式数据库架构适合大数据量、负载高的情况,它有良好的拓展性和高可用性。通过在多台服务器之间分布数据,可以实现在多台服务器之间的负载均衡,提高访问效率。

2. MySQL中查询缓存优化

2.1 概述

开启MySQL的查询缓存,当执行完全相同的SQL语句的时候,服务器就会直接从缓存中读取结果,当数据被修?#27169;?#20043;前的缓存会失效,修改比较频繁的表不适合做查询缓存。

2.2 操作流程

在这里插入图片描述

  1. 客户端发送一条查询给服务器;
  2. 服务器先回检查查询缓存,如果命中了缓存,则立即返回存储在缓存中的结果。否则进入下一阶?#21361;?/li>
  3. 服务器端进行SQL解析、预处理,再由优化器生成对应的执行计划;
  4. 执行计划查询执行引擎调用存储引擎接口获取数据并返回结果,以及更新缓存。

2.3 查询缓存配置

1.查看当前的MySQL数据库是否支持查询缓存 :
SHOW VARIABLES LIKE ‘have_query_cache’;
在这里插入图片描述
2.查看当前MySQL是否开启了查询缓存 :
SHOW VARIABLES LIKE ‘query_cache_type’;
在这里插入图片描述
3.查看查询缓存的占用大小 :
SHOW VARIABLES LIKE ‘query_cache_size’;
在这里插入图片描述
4.查看查询缓存的状态变量 :
SHOW STATUS LIKE ‘Qcache%’;
在这里插入图片描述
各个变量的含义如下 :
在这里插入图片描述

2.4 开启查询缓存

MySQL的查询缓存默认是关闭的,需要手动配置参数query cache type,来开启查询缓存。query cache type该参数的可取值有三个 :
1)OFF或0 :查询缓存功能关闭;
2)ON或1 :查询缓存功能打开,SELECT的结果符合缓存条件即会缓存,否则,不予缓存,显示指定SQL_NO_CACHE,不予缓存
3)DEMAND或2 :查询缓存功能按需进行,显示指定SQL_CACHE的SELECT语句才会缓存;其他均不予缓存。
在/usr/my.cnf配置中,增加以下配置 :
开启mysql的查询缓存
query_cache_type=1
配置完毕之后,重启服务即可生效;
?#32531;?#23601;可以在命令行执行SQL语句进行验证,执行一条比较耗时的SQL语句,?#32531;?#20877;多执行?#22797;危?#26597;看后面?#22797;?#30340;执行时间;获取通过查看查询缓存的缓存命中数,来判定是否走查询缓存。

2.5 查询缓存SELECT选项

可以在SELECT语句中指定两个与查询缓存相关的选项 :
SQL_CACHE : 如果查询结果?#24378;?#32531;存的,并且query_cache_type系统变量的值为ON或DEMAND,则缓存查询结果。
SQL_NO_CACHE : 服务器不使用查询缓存。它既不查询缓存,也不检查是否已缓存,也不缓存查询结果。
例子 :
1)

2.6 查询缓存失效的情况

1)SQL语句不一致的情况,要想命中查询缓存,查询的SQL语句必须一致。
在这里插入图片描述
2)当查询语句中有一些不确定的时,则不会缓存。如 :now(),current_date(),curdate(),curtime(),rand(),uuid(),database().
在这里插入图片描述
3)不使用任何表查询语句。
select ‘A’;
4)查询MySQL,information_schema 或 performance_schema数据库中的表时,不会走查询缓存。
select * from information_schema.engines;
5)在存储的函数,触发器或事件的主体内执行的查询。
6)如果表更?#27169;?#21017;使用该表的所有高速缓存查询都将变为无效并从高速缓存中删除。这包括使用MERGE?#25104;?#21040;已更改表的表的查询。一个表可以被许多类型的语句,如被改变INSERT,UPDATE,TRUNCATE TABLE,ALTER TABLE,DROP TABLE,或 DROP DATABASE。

3. MySQl内存管理及优化

3.1 内存优化原则

1)将尽量多的内存分配给MySQL做缓存,但要给操作系统和其他程序预留足够内存。
2)MyISAM存储引擎的数据文件读取依赖于操作系统自身的IO缓存,因此,如果有MySQL表,就要预留更多的内存给操作系统做IO缓存。
3)排序区、连接区等缓存是分配给每个数据库会后(session)专用的,其默?#29616;?#30340;设置要根据最大连接数合理分配,如果设置太大,不但浪费资源,而?#20197;?#24182;发连接较高时会导致物理内存耗尽。

3.2 MyISAM内存优化

myisam存储引擎使用key_buffer缓存索引块,加速myisam索引的读写速?#21462;?#23545;于myisam表的数据块,mysql没有特别的缓存机制,完全依赖于操作系统的IO缓存。

key_buffer_size
key_buffer_size决定MyISAM索引块缓存区的大小,直接影响到MyISAM表的存取效率。可以在MySQL参数文件中设置key_buffer_size的?#25285;?#23545;于一般MyISAM数据块,建议至少将1/4可用内存分配给key_buffer_size。
在/usr/my.cnf中做如下配置 :
key_buffer_size=512M

read _buffer_size
如果需要经常顺序扫描myisam表,可以通过增大read_buffer_size的值来改善?#38405;堋?#20294;需要注意的是read_buffer_size是每个session独占的,如果默?#29616;?#35774;置太大,就会造成内存浪?#36873;?/p>

read_rnd_buffer_size
对于需要做排序的myisam表的查询,如带有order by子句的sql,?#23454;?#22686;加read_buffer_size的?#25285;?#21487;以改善此类的sql?#38405;堋?#20294;需要注意的是read_rnd_buffer_size是每个session独占的,如果默?#29616;?#35774;置太大,就会造成内存浪?#36873;?/p>

3.3 InnoDB内存优化

innoDB用一块内存区做IO缓存池,该缓存池不仅用来缓存innodb的索引块,而且也用来缓存innodb的数据块。

innodb_buffer_pool_size
该变量决定了innodb存储引擎表数据和索引数据的最大缓存区大小。在保证操作系统及其他程序有足够内存可用的情况下,innodb_buffer_pool_size的值越大,缓存命?#26032;?#36234;高,访问InnoDB表需要的?#25490;蘄/O就越少,?#38405;?#20063;就越高。
innodb_buffer_pool_size=512M

innodb_log_buffer_size
决定innodb重做日志缓存的大小,对于可能产生大量更新记录的大事务,增加innodb_log_buffer_size的大小,可用避免innodb在事物提交前就执行不必要的日志写入?#25490;?#25805;作。
innodb_log_buffer_size=10M

4. MySQL并发参数调整

从实现上来说,MySQL Server是多线程结构,包括后台线程和客户服务线程。多线程可用?#34892;?#21033;用服务器资源,提供数据库的并发?#38405;堋?br />在MySQL中,控制并发连接和线程的主要参数包括max_connections、back_log、thread_cache_siez、table_open_cache。

4.1 max_connections

采用max_connections控制允许连接到MySQL数据库的最大数量,默?#29616;?#26102;151.如果状态变量connection_errors_max_connections不为零,并且一直增长,则说明不断有连接请求因数据库连接数已达到允许最大值而失败,这?#24378;?#20197;考虑增大max_connections的值。
MySQL最大可支持的连接数,取决于很多因素,包括给定操作系统平台的线程库的质量、内存大小、每个连接的负荷、CPU的处理速度,期望的响应时间?#21462;?#22312;Linux平台下,?#38405;?#22909;的服务器,支持500-1000个连接不是难事,需要根据服务器?#38405;?#36827;行评估设定。

4.2 back_log

back_log参数控制MySQL监听TCP端口时设置的积压请求栈大小。如果MySQL的连接数达到max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过back_log,将不被授予连接资源,将会报错。5.6.6版本之前默?#29616;?#20026;50,之后的版本默认为50+(max_connections / 5),最大不超过900。
如果需要数据库在?#38553;?#30340;时间内处理大量连接请求,可以考虑?#23454;?#22686;大back_log的值。

4.3 table_open_cache

该参数用来控制所有SQL语句执行线程可打开表缓存的数量,而在执行SQL语句时,每一个SQL执行线程至少要打开1个表缓存。该参数的值应该根据设置的最大连接数mac_connections以及每个连接执行关联查询中涉及的表的最大数量来设定 :
max_connections x N ;

4.4 thread_cache_size

为了加快连接数据库的速度,MySQL会缓存一定数量的客户服务线程以备重用,通过参数thread_cache_size可控制MySQL缓存客户服务线程的数量。

4.5 innodb_lock_wait_timeout

该参数是用来设置InnoDB事务等待行锁的时间,默?#29616;?#26159;50ms,可以根据需要进行动态设置。对于需要快速反馈的业务系统来说,可以将行锁的等待时间调小,以避免事务长时间挂起;对于后台运行的批?#30475;?#29702;程序来说,可以将行锁的等待时间调大,以避免发生大的回滚操作。

5. MySQl锁问题

5.1 锁概述

锁是计算机协调多个进程或线程并发访问某一资源的机制。
在数据库中,除传统的计算资源(如CPU、RAM、I/O等)的争用之外,数据也是一种供许多用户共享的资源。如何保证数据并发访?#23454;?#19968;致性、?#34892;?#24615;是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问?#38405;?#30340;一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。

5.2 锁分类

从对数据操作的粒度分:
1)表锁 :操作时,会锁定整个表。
2)行锁 :操作时,会锁定当前操作行。
从对数据操作的类型分 :
1)读锁(共享锁) :针对同一份数据,多个读操作可以同时进行而不会互相影响(只能读不能写,写必须先释放锁)。
2)写锁(排它锁) :当前操作没有完成之前,它会阻断其他写锁和读锁(只能在当前操作释放写锁,其他操作才可以进行)。

5.3 MySQL锁

相对其他数据库而言,MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎不同的锁机制。下表?#26032;?#21015;出了各存储引擎对锁的支持情况 :
在这里插入图片描述
MySQL这三种锁的特性可大致归纳如下 :
表级锁 :偏向MyISAM存储引擎,开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。
行级锁 :偏向InnoDB存储引擎,开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
页面锁 :开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。
从上述特点可见,很难笼统地?#30340;?#31181;锁更好,只能就具体应用的特点来?#30340;?#31181;锁更合适!仅从锁的角度来说 :表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如web应用;而行级锁则更适合于大量按索引条件并发更新少量不同数据,同时又并查询的应用,如一些在线事物处理(OLTP)系统。

5.2 MyISAM表锁

MyISAM存储引擎只支持表锁,这也是MySQL开?#25216;?#20010;版本中唯一支持的锁类型。

5.2.1 如何加表锁

MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显示加锁。
显示加表锁语法:
加读锁 :lock table table_name read;
加写锁 :lock table table_name write;
unlock tables : 解锁
在这里插入图片描述

5.2.4 结论

锁模式的相互兼容性如表中所示 :
在这里插入图片描述
由上表可见 :
1)对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但是会阻塞对同一表的写请求;
2)对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;
简而言之,就是读锁会阻塞写,但是不会阻塞读。而写锁,则既会阻塞读,?#21482;?#38459;塞写。
此外,MyISAM的读写锁调度是写优先,这也是MyISAM不适合做写为主的表的存储引擎的原因。因为写锁后,其他线程不能做任何操作,大量的更新会使查询很难得到锁,从而造成用于阻塞。

5.2.5 查看锁的争用情况

show open tables;
在这里插入图片描述
In_user : 表当前被查询使用的次数。如果该数为零,则表是打开的,但是当前没有被使用。
Name_locked : 表名称是否被锁定。名称锁定用于取消表或对表进行重命名等操作。
show status like ‘Table_locks%’;
在这里插入图片描述
Table_locks_immediate : 指的是能够立即获得表级锁的次数,每立即获取锁,值加1。
Table_locks_waited : 指的是不能立即获取表级锁而需要等待的次数,每等待一?#21361;?#35813;值加1,此值高说明存在着较为严重的表级锁争用情况。

5.3 InnoDB行锁

5.3.1 行锁介绍

行锁特点 :偏向InnoDB存储引擎,开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
InnoDB与MyISAM的最大不同有两点 :一是支持事务;二是采用了行级锁。

5.3.2 背景知识

事务及其ACID属性
事务是由一组SQL语句组成的逻辑处理单元。
事务具有以下四个特性,简称为事务ACID属性。
在这里插入图片描述
并发事务处理带来的问题
在这里插入图片描述
事务隔离级别
为了解决上述提到的事务并发问题,数据库提供一定的事务隔离机?#35780;?#35299;决这个问题。数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使用事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的。
数据库的隔离级别有四个,由低到高?#26469;?#20026;Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏写、脏读、不可重复读、幻读这几类问题。
在这里插入图片描述
MySQL的数据库的默认隔离级别Repeatable read ,查看方式 :
在这里插入图片描述

5.3.3 InnoDB的行锁模式

InnoDB实现了以下两种类型的行锁。
共享锁(S):又称为读锁,简称S锁,共享锁就是多个事务对于同一数据可以共享一把锁,都能访?#23454;?#25968;据,但是只能读不能修改。
排他锁(X):又称为写锁,简称X锁,排他锁就是不能与其他锁并存,入一个事务获取了一个数据行的排他锁,其他事务就不能再获取该行的其他锁,包括共享锁和排他锁,但是获取排他锁的事务?#24378;?#20197;对数据进行读取和修改。
对于update、delete和insert语句,InnoDB会自动给涉及数据集?#20248;?#20182;锁(X);
对于普通SELECT语句,InnoDB不会加任何锁;
可以通过以下语句显示给记?#25216;?#21152;共享锁或排他锁。
共享锁(S):select * from table_name where LOCK IN SHARE MODE
排他锁(X):select * from table_name where … FOR UPDATE

5.3.6 无索引行锁升级为表锁

如果不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,实际效果更表锁一样。
查看当前表的索引 : show index from test_innodb_lock;
在这里插入图片描述
在这里插入图片描述
由于执行更新时,name字段本来为varchar类型,我们是作为数组类型使用,存在类型转换,索引失效,最终行锁变为表锁。

5.3.7 间隙锁危害

当我们用?#27573;?#26465;件,而不是使用相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据进行加锁;对于键值在条件返回内但并不存在的记录,叫做“间隙(GAP)”,InnoDB?#19981;?#23545;这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。
在这里插入图片描述

5.3.8 InnoDB行锁争用情况

show status like ‘innodb_row_lock%’;
在这里插入图片描述
Innodb_row_lock_current_waits : 当前正在等待锁定的数量
Innodb_row_lock_time : 从系统启动?#36739;?#22312;锁定总时间长度
Innodb_row_lock_time_avg : ?#30475;?#31561;待所花平均?#32972;?br />Innodb_row_lock_time_max : 从系统启动?#36739;?#22312;等待最长的一次所花的时间
Innodb_row_lock_waits : 系统启动后?#36739;?#22312;总共等待的次数
当等待的次数很高,而且?#30475;?#31561;待的?#32972;?#20063;不小的时候,我们就需要分析系统中为什么会有如此多的等待,?#32531;?#26681;据分析结果订制优化计划。

5.3.9 总结

InnoDB存储引擎由于实现了行级锁定,虽然在锁定机制的实现方面带来了?#38405;?#25439;耗可能比表锁会更高一些,但是在整体并发处理能力方面要?#23545;?#20248;于MyISAM的表锁的。当系统并发量较高时,InnoDB的整体?#38405;?#21644;MyISAM相比就会有比较明显的优势。
但是,InnoDB的行级锁同样也有其脆弱的一面,当我们使用不当的时候,可能会让InnoDB的整体?#38405;?#34920;现不仅不能比MyISAM高,甚至可能会更差。
优化建议 :
尽可能让所有数据检索都能通过索引来完成,避免无索引行锁升级为表锁。
合理设计索引,尽量缩小锁的?#27573;А?br />尽可能减少索引条件,及索引?#27573;В?#36991;免间隙锁。
尽量控制事务大小,减少锁定资源量和时间长?#21462;?br />尽可使用低级别事务隔离(但是需要业务层面满足需求)。

6. 常用SQL技巧

6.1 SQL执行顺序

编写顺序
在这里插入图片描述
执行顺序
在这里插入图片描述

6.2 正则表达式

正则表达式(Regular Expression)是指一个用来描述或者匹配一系列符合某个句法规则的字符串的单个字符串。
在这里插入图片描述
在这里插入图片描述

6.3 MySQL常用函数

数字函数
在这里插入图片描述
字符串函数
在这里插入图片描述
日期函数
在这里插入图片描述
聚合函数
在这里插入图片描述

 

posted on 2019-07-20 18:10 小小一 阅读(...) 评论(...) 编辑 收藏
耐克篮球多少钱
青海十一选五中奖规则 极速快3哪里下载迅雷下载 35选7开奖结果49期 山西泳坛夺金玩法 管家婆三肖中特免费料 彩票销售点利润 乒乓球发球规则 广东36选7福利彩票开奖查询 3d彩宝贝走势图 体彩甘肃十一选五玩法 快三必中的十大规律 江苏十一县五走势图 广东快乐十分任五规律 黑龙江快乐5个尾 极速时时彩软件下载